{Reference Type}: Journal Article {Title}: CHNet: A multi-task global-local Collaborative Hybrid Network for KRAS mutation status prediction in colorectal cancer. {Author}: Cai M;Zhao L;Qiang Y;Wang L;Zhao J; {Journal}: Artif Intell Med {Volume}: 155 {Issue}: 0 {Year}: 2024 Sep 5 {Factor}: 7.011 {DOI}: 10.1016/j.artmed.2024.102931 {Abstract}: Accurate prediction of Kirsten rat sarcoma (KRAS) mutation status is crucial for personalized treatment of advanced colorectal cancer patients. However, despite the excellent performance of deep learning models in certain aspects, they often overlook the synergistic promotion among multiple tasks and the consideration of both global and local information, which can significantly reduce prediction accuracy. To address these issues, this paper proposes an innovative method called the Multi-task Global-Local Collaborative Hybrid Network (CHNet) aimed at more accurately predicting patients' KRAS mutation status. CHNet consists of two branches that can extract global and local features from segmentation and classification tasks, respectively, and exchange complementary information to collaborate in executing these tasks. Within the two branches, we have designed a Channel-wise Hybrid Transformer (CHT) and a Spatial-wise Hybrid Transformer (SHT). These transformers integrate the advantages of both Transformer and CNN, employing cascaded hybrid attention and convolution to capture global and local information from the two tasks. Additionally, we have created an Adaptive Collaborative Attention (ACA) module to facilitate the collaborative fusion of segmentation and classification features through guidance. Furthermore, we introduce a novel Class Activation Map (CAM) loss to encourage CHNet to learn complementary information between the two tasks. We evaluate CHNet on the T2-weighted MRI dataset, and achieve an accuracy of 88.93% in KRAS mutation status prediction, which outperforms the performance of representative KRAS mutation status prediction methods. The results suggest that our CHNet can more accurately predict KRAS mutation status in patients via a multi-task collaborative facilitation and considering global-local information way, which can assist doctors in formulating more personalized treatment strategies for patients.