{Reference Type}: Journal Article {Title}: Histological characterization of pulp regeneration using decellularized human dental pulp and mesenchymal stem cells in a feline model. {Author}: Tan YY;Abdullah D;Abu Kasim NH;Yazid F;Mahamad Apandi NI;Ramanathan A;Soo E;Radzi R;Teh LA; {Journal}: Tissue Cell {Volume}: 90 {Issue}: 0 {Year}: 2024 Oct 20 {Factor}: 2.586 {DOI}: 10.1016/j.tice.2024.102484 {Abstract}: Regenerative endodontics aims to restore pulp tissues, thus preserving the vitality of the tooth. One promising approach involves the utilization of decellularized human dental pulp (DHDP) as a scaffold repopulated with Wharton's Jelly mesenchymal stem cells (WJMSCs). This study aimed to regenerate pulp tissues using DHDP and WJMSCs following pulpectomy in mature canine teeth of a feline animal model and to investigate the histological features of the regenerated pulp. A 12-month-old male domestic shorthaired felines were used as subjects. Teeth were categorized into untreated (Group 1), pulpectomy with mineral trioxide aggregate (MTA) (Group 2), and pulpectomy with DHDP-repopulated scaffold and MTA (Group 3). The animals were sacrificed six weeks post-intervention. H&E and immunohistochemistry using anti-collagen type 1 and laminin antibodies were used to stain the tissue sections. Histological examinations presented pulp-like tissues in Group 3, with tissue components similar to the structures found in Group 1. Immunohistochemical analysis demonstrated the presence of collagen type I and laminin within the regenerated tissues. The root canals of teeth in Group 2 were devoid of pulpal tissue. DHDP with WJMSCs can potentially be used for pulp regeneration, supporting the modality for developing new clinical protocols in stem cell therapy.