{Reference Type}: Journal Article {Title}: Mechanistic insight into the effects of interaction between biochar and soil with different properties on phenanthrene sorption. {Author}: Shang Q;Chi J; {Journal}: J Environ Manage {Volume}: 367 {Issue}: 0 {Year}: 2024 Sep 26 {Factor}: 8.91 {DOI}: 10.1016/j.jenvman.2024.121961 {Abstract}: Soil composition varies considerably in nature, so it is vital to investigate the mechanism of the effect of various soil parameters on biochar sorption capacity. In this study, two biochars (W4 and W7) were derived from wheat straw at temperatures of 400 and 700 °C and were incubated with three different soils. Changes in biochar surface features by aging in the soils and the consequent impact on phenanthrene sorption were examined. The results showed that the effect of adding biochar on phenanthrene sorption capacity (Koc) varied by soil. When biochar was freshly mixed with soil, the Koc value in soil with higher clay content was more dramatically altered by biochar, which is due to clay particles adhering to the biochar surface. Moreover, the Koc value was significantly decreased by the addition of W4 but increased by the addition of W7 in general. After aging, most of the Koc value decreased. The greatest decrease in Koc value was observed in biochar and soil composed with the highest clay content for W4 (24-63%), as well as soil composed with the highest organic matter content for W7 (46-64%). This is because the surface polarity and micropores of biochar dropped the most rapidly in these mixes, resulting in a significant decrease in hydrophobic and pore-filling properties. The results revealed that the impact of biochar-soil interactions on phenanthrene sorption is related to not only biochar properties but also soil clay particles, soil organic matter content and pH. The findings of the study can be utilized to assess the efficacy of biochar application in soil remediation for various features.