{Reference Type}: Journal Article {Title}: Transcriptome Reveals the Key Genes Related to the Metabolism of Volatile Sulfur-Containing Compounds in Lentinula edodes Mycelium. {Author}: Li Z;Pan F;Huang W;Gao S;Feng X;Chang M;Chen L;Bian Y;Tian W;Liu Y; {Journal}: Foods {Volume}: 13 {Issue}: 14 {Year}: 2024 Jul 10 {Factor}: 5.561 {DOI}: 10.3390/foods13142179 {Abstract}: Lentinula edodes (L. edodes) is a globally popular edible mushroom because of its characteristic sulfur-containing flavor compounds. However, the formation of the volatile sulfur-containing compounds in the mycelium of L. edodes has not been studied. We found that there were also sulfur-containing aroma compounds in the mycelium of L. edodes, and the content and composition varied at different stages of mycelial growth and development. The γ-glutamyl-transpeptidase (GGT) and cysteine sulfoxide lyase (C-S lyase) related to the generation of sulfur compounds showed the highest activities in the 15-day sample. Candidate genes for the metabolism of volatile sulfur compounds in mycelium were screened using transcriptome analysis, including encoding the GGT enzyme, C-S lyase, fatty acid oxidase, HSP20, and P450 genes. The expression patterns of Leggt3 and Leccsl3 genes were consistent with the measured activities of GGT and C-S lyase during the cultivation of mycelium and molecular dynamics simulations showed that they could stably bind to the substrate. Our findings provide insights into the formation of sulfur-containing flavor compounds in L. edodes. The mycelium of L. edodes is suggested for use as material for the production of sulfur-containing flavor compounds.