{Reference Type}: Journal Article {Title}: The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development. {Author}: Li Q;Wang Y;Sun Z;Li H;Liu H; {Journal}: Int J Mol Sci {Volume}: 25 {Issue}: 14 {Year}: 2024 Jul 12 {Factor}: 6.208 {DOI}: 10.3390/ijms25147680 {Abstract}: In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes.