{Reference Type}: Journal Article {Title}: Feasibility of wearable sensor signals and self-reported symptoms to prompt at-home testing for acute respiratory viruses in the USA (DETECT-AHEAD): a decentralised, randomised controlled trial. {Author}: Quer G;Coughlin E;Villacian J;Delgado F;Harris K;Verrant J;Gadaleta M;Hung TY;Ter Meer J;Radin JM;Ramos E;Adams M;Kim L;Chien JW;Baca-Motes K;Pandit JA;Talantov D;Steinhubl SR; {Journal}: Lancet Digit Health {Volume}: 6 {Issue}: 8 {Year}: 2024 Aug {Factor}: 36.615 {DOI}: 10.1016/S2589-7500(24)00096-7 {Abstract}: BACKGROUND: Early identification of an acute respiratory infection is important for reducing transmission and enabling earlier therapeutic intervention. We aimed to prospectively evaluate the feasibility of home-based diagnostic self-testing of viral pathogens in individuals prompted to do so on the basis of self-reported symptoms or individual changes in physiological parameters detected via a wearable sensor.
METHODS: DETECT-AHEAD was a prospective, decentralised, randomised controlled trial carried out in a subpopulation of an existing cohort (DETECT) of individuals enrolled in a digital-only observational study in the USA. Participants aged 18 years or older were randomly assigned (1:1:1) with a block randomisation scheme stratified by under-represented in biomedical research status. All participants were offered a wearable sensor (Fitbit Sense smartwatch). Participants in groups 1 and 2 received an at-home self-test kit (Alveo be.well) for two acute respiratory viral pathogens: SARS-CoV-2 and respiratory syncytial virus. Participants in group 1 could be alerted through the DETECT study app to take the at-home test on the basis of changes in their physiological data (as detected by our algorithm) or due to self-reported symptoms; those in group 2 were prompted via the app to self-test only due to symptoms. Group 3 served as the control group, without alerts or home testing capability. The primary endpoints, assessed on an intention-to-treat basis, were the number of acute respiratory infections presented (self-reported) and diagnosed (electronic health record), and the number of participants using at-home testing in groups 1 and 2. This trial is registered with ClinicalTrials.gov, NCT04336020.
RESULTS: Between Sept 28 and Dec 30, 2021, 450 participants were recruited and randomly assigned to group 1 (n=149), group 2 (n=151), or group 3 (n=150). 179 (40%) participants were male, 264 (59%) were female, and seven (2%) identified as other. 232 (52%) were from populations historically under-represented in biomedical research. 118 (39%) of the 300 participants in groups 1 and 2 were prompted to self-test, with 61 (52%) successfully completing self-testing. Participants were prompted to home-test more frequently due to symptoms (41 [28%] in group 1 and 51 [34%] in group 2) than due to detected physiological changes (26 [17%] in group 1). Significantly more participants in group 1 received alerts to test than did those in group 2 (67 [45%] vs 51 [34%]; p=0ยท047). Of the 61 individuals who were prompted to test and successfully did so, 19 (31%) tested positive for a viral pathogen-all for SARS-CoV-2. The individuals diagnosed as positive for SARS-CoV-2 in the electronic health record were eight (5%) in group 1, four (3%) in group 2, and two (1%) in group 3, but it was difficult to confirm if they were tied to symptomatic episodes documented in the trial. There were no adverse events.
CONCLUSIONS: In this direct-to-participant trial, we showed early feasibility of a decentralised programme to prompt individuals to use a viral pathogen diagnostic test based on symptoms tracked in the study app or physiological changes detected using a wearable sensor. Barriers to adequate participation and performance were also identified, which would need to be addressed before large-scale implementation.
BACKGROUND: Janssen Pharmaceuticals.