{Reference Type}: Journal Article {Title}: A cross-species transcriptomic analysis reveals a novel 2-dimensional classification system explaining the invasiveness heterogeneity of pancreatic neuroendocrine tumor. {Author}: Hong X;Zhang X;Jiang R;Qiao S;Wang W;Zhang H;Wang J;Yin B;Li F;Ling C;Wang X;Zhao Y;Wu K;Wu W; {Journal}: Cancer Lett {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 22 {Factor}: 9.756 {DOI}: 10.1016/j.canlet.2024.217131 {Abstract}: Pancreatic neuroendocrine tumors (PanNETs), the second most common type of primary pancreatic tumors, display notable heterogeneity in invasiveness. Current knowledge regarding genomic alterations, including DAXX/ATRX, MEN1 mutations, and copy number variations (CNVs), provides some insights into tumor invasiveness. However, the underlying reasons for the significant variation in invasiveness between insulinoma and other types of PanNETs remain unclear. To construct a comprehensive model for the stratification of prognosis, we employed analysis of both the well-established Rip1-Tag2 (RT2) mouse model of PanNETs and human PanNETs with various functional types. Firstly, by applying single-cell and bulk RNA sequencing in PanNETs from different ages and strains of RT2 mice and human PanNETs, we introduced a 2-dimensional (2D) classification system. Based on the 2-D classification system, human PanNETs were mainly classified as benign insulinomas or non-insulinomas subclusters. Non-insulinomas subtypes mainly included gastrinomas, glucagonomas, VIPomas, and NF-PanNETs, which all exhibited potential invasiveness. In addition, we discovered an enrichment of specific CNV patterns and mutations in corresponding human PanNET subclusters. Then we denoted somatic DAXX/ATRX as the 'second hit' and confounding factors for invasiveness. Finally, by combining the 2D system, DAXX/ATRX mutation status, and tumor diameter, a group of indolent PanNETs with minimal recurrence risk was identified. In conclusion, our current work constructed a comprehensive model to elucidate the heterogeneity of invasiveness in PanNETs and improve prognostic stratification.