{Reference Type}: Journal Article {Title}: JA/ethylene and NaWRKY6/3 regulated Alternaria resistance depends on ethylene response factor 1B-like in wild tobacco. {Author}: Ma L;Song N;Duan Q;Du W;Li X;Jia W;Cui G;Wang J;Wu J; {Journal}: J Exp Bot {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 24 {Factor}: 7.298 {DOI}: 10.1093/jxb/erae320 {Abstract}: Biosynthesis of the phytoalexins scopoletin and scopolin in Nicotiana species is regulated by upstream signals including jasmonate (JA), ethylene (ET) and NaWRKY3 in response to the necrotrophic fungus Alternaria alternata, which causes brown spot disease. However, how these signals are coordinated to regulate these phytoalexins remains unknown. By analyzing RNA sequencing data and RNA interference, we identified NaERF1B-like (NaERF1B-L) as a key player in Nicotiana attenuata during A. alternata infection by regulating the transcripts of Feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), encoding a key enzyme for scopoletin biosynthesis, and NaVS1-like (NaVS1-L), a putative biosynthetic gene of the phytoalexin solavetivone. We further demonstrated that the synergistic induction of these two genes by JA and ET signaling is mediated by NaERF1B-L. Additionally, we found that the two closely related proteins NaWRKY6 and NaWRKY3 physically interact to enhance NaERF1B-L expression by directly binding and activating the NaERF1B-L promoter. Collectively, our current results demonstrate that NaERF1B-L plays a positive role in resistance to A. alternata by modulating phytoalexins biosynthesis through the integration of JA/ET and NaWRKY6/3 signaling. Our findings reveal a fine-tuned transcriptional regulatory hierarchy mediated by NaERF1B-L for brown spot disease resistance in wild tobacco.