{Reference Type}: Journal Article {Title}: Human Biodistribution and Radiation Dosimetry of the Targeting Fibroblast Growth Factor Receptor 1-Positive Tumors Tracer [68Ga]Ga-DOTA-FGFR1-Peptide. {Author}: Yuan H;Chen X;Zhao M;Zhao X;Chen X;Han J;Zhang Z;Zhang J;Wang J;Dai M;Liu Y; {Journal}: Cancer Biother Radiopharm {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 18 {Factor}: 3.632 {DOI}: 10.1089/cbr.2024.0073 {Abstract}: Objective: [68Ga]Ga-DOTA-FGFR1-peptide is a novel positron emission tomography (PET) radiotracer targeting fibroblast growth factor receptor 1 (FGFR1). This study aimed to evaluate the safety, biodistribution, radiation dosimetry, and imaging potential of [68Ga]Ga-DOTA-FGFR1-peptide. Methods: The FGFR1-targeting peptide DOTA-(PEG2)-KAEWKSLGEEAWHSK was synthesized by manual solid-phase peptide synthesis and high-performance liquid chromatography purification, and labeled with 68Ga with DOTA as chelating agent. We recruited 14 participants and calculated the radiation dose of 4 of these pathologically confirmed nontumor subjects using OLINDA/EXM 2.2.0 software. At the same time, the imaging potential in 10 of these lung cancer patients was evaluated. Results: The biodistribution of [68Ga]Ga-DOTA-FGFR1-peptide in 4 subjects showed the highest uptake in the bladder and kidney. Dosimetry analysis indicated that the bladder wall received the highest effective dose (3.73E-02 mSv/MBq), followed by the lungs (2.36E-03 mSv/MBq) and red bone marrow (2.09E-03 mSv/MBq). No normal organs were found to have excess specific absorbed doses. The average systemic effective dose was 4.97E-02 mSv/MBq. The primary and metastatic tumor lesions were clearly visible on PET/computed tomography (CT) images in 10 patients. Conclusion: Our results indicate that [68Ga]Ga-DOTA-FGFR1-peptide has a good dosimetry profile and can be used safely in humans, and it has significant potential value for clinical PET/CT imaging.