{Reference Type}: Journal Article {Title}: Identification of several lncRNA-mRNA pairs associated with marbling trait between Nanyang and Angus cattle. {Author}: Shi M;Huang L;Meng S;Wang H;Zhang J;Miao Z;Li Z; {Journal}: BMC Genomics {Volume}: 25 {Issue}: 1 {Year}: 2024 Jul 16 {Factor}: 4.547 {DOI}: 10.1186/s12864-024-10590-x {Abstract}: BACKGROUND: The marbling trait of cattle muscles, being a key indicator, played an important role in evaluating beef quality. Two breeds of cattle, namely a high-marbling (Angus) and a low-marbling (Nanyang) one, with their cattle muscles selected as our samples for transcriptome sequencing, were aimed to identify differentially expressed long non-coding RNAs (lncRNAs) and their targets associated with the marbling trait.
RESULTS: Transcriptome sequencing identified 487 and 283 differentially expressed mRNAs and lncRNAs respectively between the high-marbling (Angus) and low-marbling (Nanyang) cattle muscles. Twenty-seven pairs of differentially expressed lncRNAs-mRNAs, including eighteen lncRNAs and eleven target genes, were found to be involved in fat deposition and lipid metabolism. We established a positive correlation between fourteen up-regulated (NONBTAT000849.2, MSTRG.9591.1, NONBTAT031089.1, MSTRG.3720.1, NONBTAT029718.1, NONBTAT004228.2, NONBTAT007494.2, NONBTAT011094.2, NONBTAT015080.2, NONBTAT030943.1, NONBTAT021005.2, NONBTAT021004.2, NONBTAT025985.2, and NONBTAT023845.2) and four down-regulated (NONBTAT000850.2, MSTRG.22188.3, MSTRG.22188.4, and MSTRG.22188.5) lncRNAs and eleven genes related to adiponectin family protein (ADIPOQ), cytochrome P450 family (CYP4V2), 3-hydroxyacyl-CoA dehydratase family (HACD4), kinesin family (KIF5C), lipin family (LPIN2), perilipin family (PLIN1), prostaglandin family (PTGIS), solute carrier family (SLC16A7, SLC2213, and SLCO4C1), and containing a transmembrane domain protein family (VSTM1).
CONCLUSIONS: These candidate genes and lncRNAs can be regarded as being responsible for regulating the marbling trait of cattle. lncRNAs along with the variations in intramuscular fat marbling established a foundation for elucidating the genetic basis of high marbling in cattle.