{Reference Type}: Journal Article {Title}: FOXC1 and FOXC2 regulate growth plate chondrocyte maturation towards hypertrophy in the embryonic mouse limb skeleton. {Author}: Almubarak A;Zhang Q;Zhang CH;Abdelwahab N;Kume T;Lassar AB;Berry FB; {Journal}: Development {Volume}: 151 {Issue}: 16 {Year}: 2024 Aug 15 {Factor}: 6.862 {DOI}: 10.1242/dev.202798 {Abstract}: The Forkhead box transcription factors FOXC1 and FOXC2 are expressed in condensing mesenchyme cells at the onset of endochondral ossification. We used the Prx1-cre mouse to ablate Foxc1 and Foxc2 in limb skeletal progenitor cells. Prx1-cre;Foxc1Δ/Δ;Foxc2Δ/Δ limbs were shorter than controls, with worsening phenotypes in distal structures. Cartilage formation and mineralization was severely disrupted in the paws. The radius and tibia were malformed, whereas the fibula and ulna remained unmineralized. Chondrocyte maturation was delayed, with fewer Indian hedgehog-expressing, prehypertrophic chondrocytes forming and a smaller hypertrophic chondrocyte zone. Later, progression out of chondrocyte hypertrophy was slowed, leading to an accumulation of COLX-expressing hypertrophic chondrocytes and formation of a smaller primary ossification center with fewer osteoblast progenitor cells populating this region. Targeting Foxc1 and Foxc2 in hypertrophic chondrocytes with Col10a1-cre also resulted in an expanded hypertrophic chondrocyte zone and smaller primary ossification center. Our findings suggest that FOXC1 and FOXC2 direct chondrocyte maturation towards hypertrophic chondrocyte formation. At later stages, FOXC1 and FOXC2 regulate function in hypertrophic chondrocyte remodeling to allow primary ossification center formation and osteoblast recruitment.