{Reference Type}: Journal Article {Title}: Luteolin protects mouse hippocampal neuronal cells against isoflurane-induced neurotoxicity through miR-214/PTEN/Akt pathway. {Author}: Zhang G;Sun C;Zhou G;Zhang Q; {Journal}: Neurotoxicology {Volume}: 103 {Issue}: 0 {Year}: 2024 Jul 14 {Factor}: 4.398 {DOI}: 10.1016/j.neuro.2024.07.008 {Abstract}: Isoflurane is one of the most commonly used anaesthetic agents in surgery procedures. During the past decades, isoflurane has been found to cause impairment in neurological capabilities in new-borns and elderly patients. Luteolin is a flavonoid that has been documented to possess a neuroprotective effect. Here we investigated the putative neuroprotective effects of luteolin on isoflurane-induced neurotoxicity in mouse hippocampal neuronal HT22 cells and explored the potential mechanisms. We demonstrated that luteolin improved mitochondrial dysfunction and reduced oxidative stress and apoptosis in isoflurane-treated HT22 cells, and thus inhibiting the isoflurane-induced neuronal injury. Further investigations showed that isoflurane exposure caused miR-214 downregulation, which could be mitigated by treatment with luteolin. Knockdown of miR-214 attenuated the neuroprotection of luteolin on isoflurane-induced neuronal injury. More importantly, luteolin inhibited isoflurane-caused regulation of the PTEN/Akt pathway, while miR-214 knockdown altered the regulatory effect of luteolin on the PTEN/Akt pathway. Furthermore, the effects of miR-214 knockdown on the neuroprotection of luteolin could also be prevented by knockdown of PTEN, implying that the neuroprotective effect of luteolin was mediated by miR-214/PTEN/Akt signaling pathway. These findings provided evidence for the potential application of luteolin in preventing isoflurane-induced neurotoxicity.