{Reference Type}: Journal Article {Title}: A systematic review on artificial intelligence evaluating PSMA PET scan for intraprostatic cancer. {Author}: Liu J;Cundy TP;Woon DTS;Desai N;Palaniswami M;Lawrentschuk N; {Journal}: BJU Int {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 14 {Factor}: 5.969 {DOI}: 10.1111/bju.16412 {Abstract}: OBJECTIVE: To assess artificial intelligence (AI) ability to evaluate intraprostatic prostate cancer (PCa) on prostate-specific membrane antigen positron emission tomography (PSMA PET) scans prior to active treatment (radiotherapy or prostatectomy).
METHODS: This systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO identifier: CRD42023438706). A search was performed on Medline, Embase, Web of Science, and Engineering Village with the following terms: 'artificial intelligence', 'prostate cancer', and 'PSMA PET'. All articles published up to February 2024 were considered. Studies were included if patients underwent PSMA PET scan to evaluate intraprostatic lesions prior to active treatment. The two authors independently evaluated titles, abstracts, and full text. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used.
RESULTS: Our search yield 948 articles, of which 14 were eligible for inclusion. Eight studies met the primary endpoint of differentiating high-grade PCa. Differentiating between International Society of Urological Pathology (ISUP) Grade Group (GG) ≥3 PCa had an accuracy between 0.671 to 0.992, sensitivity of 0.91, specificity of 0.35. Differentiating ISUP GG ≥4 PCa had an accuracy between 0.83 and 0.88, sensitivity was 0.89, specificity was 0.87. AI could identify non-PSMA-avid lesions with an accuracy of 0.87, specificity of 0.85, and specificity of 0.89. Three studies demonstrated ability of AI to detect extraprostatic extensions with an area under curve between 0.70 and 0.77. Lastly, AI can automate segmentation of intraprostatic lesion and measurement of gross tumour volume.
CONCLUSIONS: Although the current state of AI differentiating high-grade PCa is promising, it remains experimental and not ready for routine clinical application. Benefits of using AI to assess intraprostatic lesions on PSMA PET scans include: local staging, identifying otherwise radiologically occult lesions, standardisation and expedite reporting of PSMA PET scans. Larger, prospective, multicentre studies are needed.