{Reference Type}: Journal Article {Title}: Bacterial community composition and function vary with farmland type and soil depth around a mining area. {Author}: Yan S;Wang J;Zhang J;Ning J;Chen S;Xie S; {Journal}: Environ Pollut {Volume}: 360 {Issue}: 0 {Year}: 2024 Jul 11 {Factor}: 9.988 {DOI}: 10.1016/j.envpol.2024.124510 {Abstract}: Heavy metal pollution can have adverse impacts on microorganisms, plants and even human health. To date, the impact of heavy metals on bacteria in farmland has yielded poor attention, and there is a paucity of knowledge on the impact of land type on bacteria in mining area with heavy metal pollution. Around a metal-contaminated mining area, two soil depths in three types of farmlands were selected to explore the composition and function of bacteria and their correlations with the types and contents of heavy metals. The compositions and functions of bacterial communities at the three different agricultural sites were disparate to a certain extent. Some metabolic functions of bacterial community in the paddy field were up-regulated compared with those at other site. These results observed around mining area were different from those previously reported in conventional farmlands. In addition, bacterial community composition in the top soils was relatively complex, while in the deep soils it became more unitary and extracellular functional genes got enriched. Meanwhile, heavy metal pollution may stimulate the enrichment of certain bacteria to protect plants from damage. This finding may aid in understanding the indirect effect of metal contamination on plants and thus putting forward feasible strategies for the remediation of metal-contaminated sites. MAIN FINDINGS OF THE WORK: This was the first study to comprehensively explore the influence of heavy metal pollution on the soil bacterial communities and metabolic potentials in different agricultural land types and soil depths around a mining area.