{Reference Type}: Journal Article {Title}: One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO2 and g-C3N4 and Its Photocatalytic Degradation of Rhodamine B. {Author}: Liu F;Fan M;Liu X;Chen J; {Journal}: Nanomaterials (Basel) {Volume}: 14 {Issue}: 13 {Year}: 2024 Jul 2 {Factor}: 5.719 {DOI}: 10.3390/nano14131141 {Abstract}: A cellulose-based carbon aerogel (CTN) loaded with titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) was prepared using sol-gel, freeze-drying, and high-temperature carbonization methods. The formation of the sol-gel was carried out through a one-pot method using refining papermaking pulp, tetrabutyl titanate, and urea as raw materials and hectorite as a cross-linking and reinforcing agent. Due to the cross-linking ability of hectorite, the carbonized aerogel maintained a porous structure and had a large specific surface area with low density (0.0209 g/cm3). The analysis of XRD, XPS, and Raman spectra revealed that the titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) were uniformly distributed in the CTN, while TEM and SEM observations demonstrated the uniformly distributed three-dimensional porous structure of CTN. The photocatalytic activity of the CTN was determined according to its ability to degrade rhodamine B. The removal rate reached 89% under visible light after 120 min. In addition, the CTN was still stable after five reuse cycles. The proposed catalyst exhibits excellent photocatalytic performance under visible light conditions.