{Reference Type}: Journal Article {Title}: Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. {Author}: Cuaxinque-Flores G;Talavera-Mendoza O;Aguirre-Noyola JL;Hernández-Flores G;Martínez-Miranda V;Rosas-Guerrero V;Martínez-Romero E; {Journal}: J Hazard Mater {Volume}: 476 {Issue}: 0 {Year}: 2024 Sep 5 {Factor}: 14.224 {DOI}: 10.1016/j.jhazmat.2024.135005 {Abstract}: Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, β, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.