{Reference Type}: Journal Article {Title}: Mathematical and sensitivity analysis for chemical species in multistep dynamical system: A computational study. {Author}: Sultan F;Ishaq MS; {Journal}: Heliyon {Volume}: 10 {Issue}: 12 {Year}: 2024 Jun 30 {Factor}: 3.776 {DOI}: 10.1016/j.heliyon.2024.e32747 {Abstract}: This study presents a significant contribution to the field of chemical kinetics by providing a detailed analysis of a multi-step chemical kinetic process using ordinary differential equations (ODEs). The aim is to describe complex chemical processes' kinetics and the steady-state behavior of chemical species. The research employs reduction techniques to simplify the model by separating fast and slow processes based on their time scales, with a focus on a two-step reversible reaction mechanism. Special consideration is given to the phase flow of solution trajectories near equilibrium points, providing a clear depiction of system behavior. MATLAB simulations demonstrate the physical properties of observed data, while sensitivity analysis reveals parameters' impact on species behavior. Overall, this study enhances our understanding of chemical kinetics and offers insights into modeling complex reaction processes, with implications for various applications in chemistry and related fields.