{Reference Type}: Journal Article {Title}: Development of a rapid and fully automated factor VIII inhibitor assay, insensitive to emicizumab, and a lowest level of quantification of 0.2 BU/mL. {Author}: Verbruggen B;Binder NB;van Velp PJC;Polenewen R;Knöbl P;Sobas F;Moore GW; {Journal}: J Thromb Haemost {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 9 {Factor}: 16.036 {DOI}: 10.1016/j.jtha.2024.07.001 {Abstract}: BACKGROUND: Factor (F)VIII inhibitors are measured using labor- and resource-expensive Nijmegen or Bethesda assays, which lack sensitivity for low-titer inhibitors and show high variations in quality surveys, mainly because of manual assay procedures.
OBJECTIVE: The goal of this study was the development of a fast and fully automated FVIII inhibitor assay by using recombinant (r)FVIII as substrate and dedicated equipment for execution of the test.
METHODS: A new rapid, fully automated, FVIII inhibitor assay is presented, the core of which is use of full-length recombinant FVIII (rFVIII; Kovaltry, Bayer) as inhibitor substrate instead of plasma FVIII, resulting in rapid binding of inhibitors to rFVIII due to absence of von Willebrand factor. Dramatic shortening of incubation time facilitated full automation on an analyzer capable of 3 subsequent sample dilution steps and 3 reagent additions. Equal volume mixtures of sample and rFVIII (1.0 U/mL) were incubated for 10 minutes at 37 °C, whereafter remaining FVIII activity was analyzed with a kinetic chromogenic assay, allowing inhibitor activity calculation without preceding FVIII activity calibration, using a Ceveron s100 analyzer (Technoclone).
RESULTS: Mean titer in 60 nonhemophiliacs was 0.0 BU/mL (SD, 0.1), yielding a limit of blank of 0.1 BU/mL and lower limit of quantification of 0.2 BU/mL. Analyses were performed with the new method and a Nijmegen assay in 28 inhibitor-positive clinical samples, 14 containing emicizumab and 14 without. Correlation coefficient in emicizumab-free type I inhibitor samples was 1.0. Emicizumab dependency of the method was excluded in spiking experiments with inhibitor-positive samples. Reproducibility was tested by analyzing 7 samples in 3 laboratories for 5 days, twice daily; coefficients of variation of all samples were <15%.
CONCLUSIONS: We present development data of a sensitive and specific rapid, automated FVIII inhibitor assay generating results within 20 minutes that is less resource-intensive than standard assays with potential to improve assay variability.