{Reference Type}: Journal Article {Title}: Plasma Membrane Ca2+ ATPase Activity Enables Sustained Store-operated Ca2+ Entry in the Absence of a Bulk Cytosolic Ca2+ Rise. {Author}: Barak P;Kaur S;Scappini E;Tucker CJ;Parekh AB; {Journal}: Function (Oxf) {Volume}: 3 {Issue}: 5 {Year}: 2022 暂无{DOI}: 10.1093/function/zqac040 {Abstract}: In many cell types, the rise in cytosolic Ca2+ due to opening of Ca2+ release-activated Ca2+ (CRAC) channels drives a plethora of responses, including secretion, motility, energy production, and gene expression. The amplitude and time course of the cytosolic Ca2+ rise is shaped by the rates of Ca2+ entry into and removal from the cytosol. However, an extended bulk Ca2+ rise is toxic to cells. Here, we show that the plasma membrane Ca2+ ATPase (PMCA) pump plays a major role in preventing a prolonged cytosolic Ca2+ signal following CRAC channel activation. Ca2+ entry through CRAC channels leads to a sustained sub-plasmalemmal Ca2+ rise but bulk Ca2+ is kept low by the activity of PMCA4b. Despite the low cytosolic Ca2+, membrane permeability to Ca2+ is still elevated and Ca2+ continues to enter through CRAC channels. Ca2+-dependent NFAT activation, driven by Ca2+ nanodomains near the open channels, is maintained despite the return of bulk Ca2+ to near pre-stimulation levels. Our data reveal a central role for PMCA4b in determining the pattern of a functional Ca2+ signal and in sharpening local Ca2+ gradients near CRAC channels, whilst protecting cells from a toxic Ca2+ overload.