{Reference Type}: Journal Article {Title}: Mitochondrial DNA Copy Number as a Biomarker for Guiding Adjuvant Chemotherapy in Stages II and III Colorectal Cancer Patients with Mismatch Repair Deficiency: Seeking Benefits and Avoiding Harms. {Author}: Chen M;Deng S;Cao Y;Wang J;Zou F;Gu J;Mao F;Xue Y;Jiang Z;Cheng D;Huang N;Huang L;Cai K; {Journal}: Ann Surg Oncol {Volume}: 31 {Issue}: 9 {Year}: 2024 Sep 10 {Factor}: 4.339 {DOI}: 10.1245/s10434-024-15759-y {Abstract}: BACKGROUND: Colorectal cancer (CRC) patients with mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) status are conventionally perceived as unresponsive to adjuvant chemotherapy (ACT). The mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA copy number (mtDNA-CN) expression. In light of previous findings indicating that the frequent truncating-mutation of TFAM affects the chemotherapy resistance of MSI CRC cells, this study aimed to explore the potential of mtDNA-CN as a predictive biomarker for ACT efficacy in dMMR CRC patients.
METHODS: Levels of MtDNA-CN were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) in a cohort of 308 CRC patients with dMMR comprising 180 stage II and 128 stage III patients. Clinicopathologic and therapeutic data were collected. The study examined the association between mtDNA-CN levels and prognosis, as well as the impact of ACT benefit on dMMR CRC patients. Subgroup analyses were performed based mainly on tumor stage and mtDNA-CN level. Kaplan-Meier and Cox regression models were used to evaluate the effect of mtDNA-CN on disease-free survival (DFS) and overall survival (OS).
RESULTS: A substantial reduction in mtDNA-CN expression was observed in tumor tissue, and higher mtDNA-CN levels were correlated with improved DFS (73.4% vs 85.7%; P = 0.0055) and OS (82.5% vs 90.3%; P = 0.0366) in dMMR CRC patients. Cox regression analysis identified high mtDNA-CN as an independent protective factor for DFS (hazard ratio [HR] 0.547; 95% confidence interval [CI] 0.321-0.934; P = 0.0270) and OS (HR 0.520; 95% CI 0.272-0.998; P = 0.0492). Notably, for dMMR CRC patients with elevated mtDNA-CN, ACT significantly improved DFS (74.6% vs 93.4%; P = 0.0015) and OS (81.0% vs 96.7%; P = 0.0017), including those with stage II or III disease.
CONCLUSIONS: The mtDNA-CN levels exhibited a correlation with the prognosis of stage II or III CRC patients with dMMR. Elevated mtDNA-CN emerges as a robust prognostic factor, indicating improved ACT outcomes for stages II and III CRC patients with dMMR. These findings suggest the potential utility of mtDNA-CN as a biomarker for guiding personalized ACT treatment in this population.