{Reference Type}: Journal Article {Title}: One-pot conversion of xylose to 1,2-pentanediol catalyzed by an organic acid-assisted Pt/NC in aqueous phase. {Author}: Wang Q;Shao Y;Zhang T;Liu CL;Dong WS; {Journal}: ChemSusChem {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 10 {Factor}: 9.14 {DOI}: 10.1002/cssc.202401109 {Abstract}: The direct synthesis of 1,2-pentanediol (1,2-PeD) from renewable xylose and its derivatives derived from hemicellulose is appealing yet challenging due to its low selectivity for the target product. In this study, one-pot catalytic conversion of xylose to 1,2-PeD was performed by using nitrogen-doped carbon (NC) supported Pt catalysts with the assistance of organic acids. A remarkable yield of 49.3% for 1,2-PeD was achieved by reacting 0.1869 g xylose in 30 mL water at 200 °C under a hydrogen pressure of 3 MPa for 8 h in the presence of 0.1 g of 2.5Pt/NC600 catalyst and 0.1869 g propanoic acid co-catalyst. The presence of vicinal Pt-acid pair sites on the surface of the 2.5Pt/NC600 catalyst exhibited a synergistic effect in promoting the hydrogenation of furfural to furfuryl alcohol intermediate and subsequent hydrogenation and ring-opening reactions leading to the formation of 1,2-PeD. The addition of organic acids, may serve as both acid catalyst for dehydration of xylose and hydrogen donor for hydrogenation of furfural and furfuryl alcohol, thereby promoting the one-pot conversion of xylose to 1,2-PeD. Remarkably, the 2.5Pt/NC600 catalyst demonstrated outstanding catalytic performance and good reusability over five consecutive cycles without significant deactivation.