{Reference Type}: Journal Article {Title}: A bisalicylhydrazone based fluorescent probe for detecting Al3+ with high sensitivity and selectivity and imaging in living cells. {Author}: Sun J;Wang Y;Wang M;Wang H; {Journal}: Spectrochim Acta A Mol Biomol Spectrosc {Volume}: 322 {Issue}: 0 {Year}: 2024 Jul 4 {Factor}: 4.831 {DOI}: 10.1016/j.saa.2024.124784 {Abstract}: A bisalicylhydrazone based fluorescence probe, bisalicyladehyde benzoylhydrazone (BS-BH), has been designed to detect Al3+. It exhibited high sensitivity and selectivity towards Al3+ in methanol-water media in physiological condition. Large stokes shifts (∼122 nm) and over ∼1000-fold enhanced fluorescence intensity were observed, which was ascribed to the formation of the two relatively independent rigid extended π conjugated systems bridged by biphenyl group when binding with Al3+. A 1:2 binding ratio between BS-BH and Al3+ was shown by Job's plot. Based on the fluorescence titration data, the detection limit was down to 3.50 nM and the association constant was evaluated to be 1.12 × 109 M-2. The plausible fluorescence sensing mechanism of suppressed ESIPT, inhibited PET, activated CHEF and restricted C = N isomerization was confirmed by a variety of spectral experiments and DFT / TD-DFT calculations. The reversibility of recognition of Al3+ for probe BS-BH was validated by adding Na2-EDTA. In addition, the MTT assay showed the good biocompatibility of BS-BH and BS-BH could be used for imaging Al3+ in living cells.