{Reference Type}: Journal Article {Title}: Metabolic picture of microbial interaction: chemical crosstalk during co-cultivation between three dominant genera of bacteria and fungi in medicinal plants rhizosphere. {Author}: Zohair MM;Dongmei W;Shimizu K; {Journal}: Metabolomics {Volume}: 20 {Issue}: 4 {Year}: 2024 Jul 9 {Factor}: 4.747 {DOI}: 10.1007/s11306-024-02138-7 {Abstract}: BACKGROUND: Microbial communities affect several aspects of the earth's ecosystem through their metabolic interaction. The dynamics of this interaction emerge from complex multilevel networks of crosstalk. Elucidation of this interaction could help us to maintain the balance for a sustainable future.
OBJECTIVE: To investigate the chemical language among highly abundant microbial genera in the rhizospheres of medicinal plants based on the metabolomic analysis at the interaction level.
METHODS: Coculturing experiments involving three microbial species: Aspergillus (A), Trichoderma (T), and Bacillus (B), representing fungi (A, T) and bacteria (B), respectively. These experiments encompassed various interaction levels, including dual cultures (AB, AT, TB) and triple cultures (ATB). Metabolic profiling by LC-QTOFMS revealed the effect of interaction level on the productivity and diversity of microbial specialized metabolites.
RESULTS: The ATB interaction had the richest profile, while the bacterial profile in the monoculture condition had the lowest. Two native compounds of the Aspergillus genus, aspergillic acid and the dipeptide asperopiperazine B, exhibited decreased levels in the presence of the AT interaction and were undetectable in the presence of bacteria during the interaction. Trichodermarin N and Trichodermatide D isolated from Trichoderma species exclusively detected during coexistence with bacteria (TB and ATB). These findings indicate that the presence of Bacillus activates cryptic biosynthetic gene clusters in Trichoderma. The antibacterial activity of mixed culture extracts was stronger than that of the monoculture extracts. The TB extract exhibited strong antifungal activity compared to the monoculture extract and other mixed culture treatments.
CONCLUSIONS: The elucidation of medicinal plant microbiome interaction chemistry and its effect on the environment will also be of great interest in the context of medicinal plant health Additionally, it sheds light on the content of bioactive constituents, and facilitating the discovery of novel antimicrobials.