{Reference Type}: Journal Article {Title}: Impacts of Increasing Temperature on the Metabolism of Confined and Freely Moving American Lobsters (Homarus americanus). {Author}: Watson WH;Gutzler BC;Goldstein JS;Jury SH; {Journal}: Biol Bull {Volume}: 245 {Issue}: 2 {Year}: 2023 Oct {Factor}: 1.932 {DOI}: 10.1086/730687 {Abstract}: AbstractGulf of Maine waters are warming rapidly, prompting a reevaluation of how commercially important marine species will respond. The goal of this study was to determine the respiratory, cardiac, and locomotory responses of American lobsters (Homarus americanus) to increasing water temperatures and to compare these to similar published studies. First, we measured the heart rate and ventilation rate of 10 lobsters that were confined in a temperature-controlled chamber while exposing them to gradually warming temperatures from 16 to 30 °C over 7 h. Both heart rate and ventilation rate increased along with the temperature up to a break point, with the mean heart rate peaking at 26.5 ± 1.6 °C, while the ventilation rate peaked at 27.4 ± 0.8 °C. In a subset of these trials (n = 5), oxygen consumption was also monitored and peaked at similar temperatures. In a second experiment, both the heart rate and activity of five lobsters were monitored with custom-built dataloggers while they moved freely in a large tank, while the temperature was increased from 18 to 29 °C over 24 h. The heart rate of these lobsters also increased with temperature, but their initial heart rates were lower than we recorded from confined lobsters. Finally, we confirmed that the low heart rates of the freely moving lobsters were due to the methods used by comparing heart rate data from eight lobsters collected using both methods with each individual animal. Thus, while our overall results are consistent with data from previous studies, they also show that the methods used in studies of physiological and behavioral responses to warming temperatures can impact the results obtained.