{Reference Type}: Journal Article {Title}: Efficient hydrodeoxygenation of lignin-derived phenolic compounds over bifunctional catalyst comprising H4PMo11VO40 coupled with Ni/C. {Author}: Yin T;Luo Y;Chauhan AS;Shu R;Tian Z;Wang C;Chen Y;Gupta NK; {Journal}: Chemphyschem {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 8 {Factor}: 3.52 {DOI}: 10.1002/cphc.202400505 {Abstract}: In the catalytic transformation of bio-oil into liquid fuels having alkanes via hydrodeoxygenation (HDO), the acid and metal sites in the catalyst are pivotal for promoting the HDO of lignin-derived phenolic compounds. This study introduces a novel bifunctional catalyst comprising phosphomolybdenum-vanadium heteropolyacids (H4PMo11VO40) coupled with Ni/C. The HDO reaction of the model compound guaiacol was carried out under reaction conditions of 230 °C, revealing the superior performance of H4PMo11VO40 with Ni/C catalysts compared to the conventional acids, even at low dosage. The Keggin structure of H4PMo11VO40 provided a solid catalyst with strong acidic and redox properties, alongside advantages such as ease of synthesis, cost-effectiveness, and tunable acid and redox properties at the molecular level. Characterization of Ni/C and the prepared acid demonstrated favorable pore structure with a mesopore volume of 0.281 cm3/g and an average pore size of 3.404 nm, facilitating uniform distribution and catalytic activity of Ni-metal. Incorporating acid enhances the acidic sites, fostering synergistic interactions between metal and acidic sites within the catalyst, thereby significantly enhancing HDO performance. Guaiacol conversion at 230 °C reached 100%, with a cyclohexane selectivity of 89.3%. This study presents a promising pathway for converting lignin-derived phenolic compounds.