{Reference Type}: English Abstract {Title}: [MiR-224-5p overexpression inhibits oxidative stress by regulating the PI3K/Akt/FoxO1 axis to attenuate hypoxia/reoxygenation-induced cardiomyocyte injury]. {Author}: Liang G;Tang H;Guo C;Zhang M; {Journal}: Nan Fang Yi Ke Da Xue Xue Bao {Volume}: 44 {Issue}: 6 {Year}: 2024 Jun 20 暂无{DOI}: 10.12122/j.issn.1673-4254.2024.06.19 {Abstract}: OBJECTIVE: To investigate the regulatory role of miRNA-224-5p in hypoxia/reoxygenation (H/R) -induced H9c2 cardiomyocyte injury.
METHODS: Plasma samples were collected from 160 patients with acute myocardial infarction and 80 healthy controls(HC) to measure miRNA-224-5p levels and other biochemical parameters. In cultured H9c2 cells with H/R injury, the effects of transfection with miR-224-5p mimics or a negative control sequence on cell viability, malondialdehyde (MDA) content, and superoxide dismutase 2 (SOD2) and lactate dehydrogenase (LDH) activities were tested. Dual luciferase reporter gene assay was performed to verify the targeting relationship between miR-224-5p and PTEN. Bioinformatics methods were used to analyze the potential mechanisms of the target genes. The expression of miRNA-224-5p in the treated cells was detected with qRT-PCR, the protein expressions of PTEN, Bcl-2, Bax, cleaved caspase-3, SOD2, p-PI3K/PI3K, p-Akt/Ak and p-FoxO1/FoxO1 were determined using Western blotting, and cell apoptosis was analysed with flow cytometry.
RESULTS: The levels of blood glucose, C-reactive protein, CK, CK-MB and cTnI were significantly higher in the AMI group compared with the HC group (P < 0.05). The expression level of miR-224-5p was significantly lowered in patients with STEMI and NSTEMI and in H9c2 cells with H/R injury. The viability of H9c2 cells decreased time-dependently following H/R injury. PTEN was a target gene of miR-224-5p, and the PI3K/Akt pathway was the most significantly enriched pathway. H9c2 cells with H/R injury showed significantly decreased SOD2 activity, increased LDH activity and MDA content, increased cell apoptosis, decreased protein expression levels of p-PI3K, p-Akt, p-FoxO1, SOD2, and Bcl-2, and increased expressions of PTEN, Bax, and cleaved caspase-3. These changes were obviously attenuated by trasnfection of the cells with miR-224-5p mimics prior to H/R exposure.
CONCLUSIONS: MiR-224-5p overexpression upregulates the expression of the antioxidant gene SOD2 through the PI3K/Akt/FoxO1 axis to relieve H/R-induced oxidative stress and reduce apoptosis of H9c2 cells.