{Reference Type}: English Abstract {Title}: [Dexmedetomidine inhibits ferroptosis of human renal tubular epithelial cells by activating the Nrf2/HO-1/GPX4 pathway]. {Author}: Zhang F;Liu G; {Journal}: Nan Fang Yi Ke Da Xue Xue Bao {Volume}: 44 {Issue}: 6 {Year}: 2024 Jun 20 暂无{DOI}: 10.12122/j.issn.1673-4254.2024.06.14 {Abstract}: OBJECTIVE: To investigate the protective effect of dexmedetomidine (DEX) against erastin-induced ferroptosis in human renal tubular epithelial cells (HK-2 cells) and explore the underlying mechanism.
METHODS: HK-2 cells were treated with erastin alone or in combination with different concentrations (2.5, 5.0 and 10 μmol/L) of DEX, and the changes in cell viability were observed using CCK-8 assay. To explore the mechanism by which DEX inhibits erastin-induced ferroptosis, HK-2 cells were treated with erastin, erastin+10 μmol/L DEX, or erastin+10 μmol/L DEX+ML385 (a Nrf2 inhibitor), after which the cell viability was assessed. The level of intracellular Fe2+ was detected by cell ferrous iron colorimetric assay kit, and flow cytometry was performed to detect reactive oxygen species (ROS); MDA and reduced glutathione assay kits were used to detect the contents of MDA and GSH in the cells; The expressions of Nrf2, HO-1 and GPX4 proteins were detected by Western blotting.
RESULTS: Erastin treatment significantly inhibited the viability of the cells, decreased GSH content, and increased intracellular levels of Fe2+, ROS and MDA. The combined treatment with 10 μmol/L DEX markedly increased the viability of the cells, increased GSH content, reduced the levels of Fe2+, ROS and MDA, and upregulated the protein expressions of Nrf2, HO-1 and GPX4 in the cells. The application of ML385 obviously blocked the protective effect of DEX and caused significant inhibition of the Nrf2/HO-1/GPX4 pathway, decreased the cell viability and GSH content, and increased the levels of Fe2+, ROS and MDA in HK-2 cells.
CONCLUSIONS: The protective effect of DEX against erastin-induced ferroptosis of HK-2 cells is probably mediated by activation of the Nrf2/HO-1/GPX4 pathway to inhibit oxidative stress.