{Reference Type}: Journal Article {Title}: Identifying autophagy-related mRNAs and potential ceRNA networks in meniscus degeneration based on RNA sequencing and experimental validation. {Author}: Zhang J;Zhu J;Zou X;Liu Y;Zhao B;Chen L;Li B;Chen B; {Journal}: Heliyon {Volume}: 10 {Issue}: 12 {Year}: 2024 Jun 30 {Factor}: 3.776 {DOI}: 10.1016/j.heliyon.2024.e32782 {Abstract}: UNASSIGNED: The intimate connection between long noncoding RNA (lncRNA) and autophagy has been established in cartilage degeneration. However, their roles in meniscal degeneration remain ambiguous. This study aimed to identify the key autophagy-related lncRNA and its associated regulatory network in meniscal degeneration in the context of osteoarthritis (OA).
UNASSIGNED: RNA sequencing was performed to identify differentially expressed lncRNAs (DELs) and mRNAs (DEMs), which were then conducted to enrichment analyses using the DAVID database and Metascape. Autophagy-related DEMs were identified by combining DEMs with data from the Human Autophagy Database. Three databases were used to predict miRNA, and the DIANA LncBase Predicted database was utilized to predict miRNA-lncRNA interactions. Based on these predictions, comprehensive competitive endogenous RNA (ceRNA) network were constructed. The expression levels of the classical autophagy markers and autophagy-related ceRNA network were validated. Additionally, Gene Set Enrichment Analysis (GSEA) was performed using autophagy-related DEMs.
UNASSIGNED: 310 DELs and 320 DEMs were identified, with five upregulated and one downregulated autophagy-related DEMs. Through reverse prediction of miRNA, paired miRNA-lncRNA interactions, and verification using RT-qPCR, two lncRNAs (PCAT19, CLIP1-AS1), two miRNA (has-miR-3680-3p and has-miR-4795-3p) and two mRNAs (BAG3 and HSP90AB1) were included in the constructed ceRNA regulatory networks. GSEA indicated that the increased expression of autophagy-related mRNAs inhibited glycosaminoglycan biosynthesis in the degenerative meniscus.
UNASSIGNED: This study presented the first construction of regulatory ceRNA network involving autophagy-related lncRNA-miRNA-mRNA interactions in OA meniscus. These findings offered valuable insights into the mechanisms underlying meniscal degeneration and provided potential targets for therapeutic intervention.