{Reference Type}: Journal Article {Title}: Crystal structure determination and analyses of Hirshfeld surface, crystal voids, inter-molecular inter-action energies and energy frameworks of 1-benzyl-4-(methyl-sulfan-yl)-3a,7a-di-hydro-1H-pyrazolo-[3,4-d]pyrimidine. {Author}: Mustaphi NEH;Chlouchi A;El Hafi M;Mague JT;Hökelek T;El Monfalouti H;Haoudi A;Mazzah A; {Journal}: Acta Crystallogr E Crystallogr Commun {Volume}: 80 {Issue}: 0 {Year}: 2024 Jun 1 暂无{DOI}: 10.1107/S2056989024005954 {Abstract}: The pyrazolo-pyrimidine moiety in the title mol-ecule, C13H12N4S, is planar with the methyl-sulfanyl substituent lying essentially in the same plane. The benzyl group is rotated well out of this plane by 73.64 (6)°, giving the mol-ecule an approximate L shape. In the crystal, C-H⋯π(ring) inter-actions and C-H⋯S hydrogen bonds form tubes extending along the a axis. Furthermore, there are π-π inter-actions between parallel phenyl rings with centroid-to-centroid distances of 3.8418 (12) Å. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.0%), H⋯N/N⋯H (17.6%) and H⋯C/C⋯H (17.0%) inter-actions. The volume of the crystal voids and the percentage of free space were calculated to be 76.45 Å3 and 6.39%, showing that there is no large cavity in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the cohesion of the crystal structure is dominated by the dispersion energy contributions.