{Reference Type}: Journal Article {Title}: tRF-His-GTG-1 enhances NETs formation and interferon-α production in lupus by extracellular vesicle. {Author}: Chen YM;Tang KT;Liu HJ;Huang ST;Liao TL; {Journal}: Cell Commun Signal {Volume}: 22 {Issue}: 1 {Year}: 2024 Jul 7 {Factor}: 7.525 {DOI}: 10.1186/s12964-024-01730-7 {Abstract}: BACKGROUND: Hyperactive neutrophil extracellular traps (NETs) formation plays a crucial role in active severe systemic lupus erythematosus (SLE). However, what triggers the imbalance in dysregulated NETs formation in SLE is elusive. Transfer RNA-derived small RNAs (tsRNAs) are novel non-coding RNAs, which participate in various cellular processes. We explore the role of tsRNAs on NETs formation in SLE.
METHODS: We analyzed the levels of NETs DNA and platelet-derived extracellular vesicles (pEVs) from 50 SLE patients and 20 healthy control subjects. The effects of pEVs on NETs formation were evaluated by using immunofluorescence assay and myeloperoxidase-DNA PicoGreen assay. The regulatory mechanism of pEVs on NETs formation and inflammatory cytokines production were investigated using an in vitro cell-based assay.
RESULTS: Increased circulating NETs DNA and pEVs were shown in SLE patients and were associated with disease activity (P < 0.005). We demonstrated that SLE patient-derived immune complexes (ICs) induced platelet activation, followed by pEVs release. ICs-triggered NETs formation was significantly enhanced in the presence of pEVs through Toll-like receptor (TLR) 8 activation. Increased levels of tRF-His-GTG-1 in pEVs and neutrophils of SLE patients were associated with disease activity. tRF-His-GTG-1 interacted with TLR8 to prime p47phox phosphorylation in neutrophils, resulting in reactive oxygen species production and NETs formation. Additionally, tRF-His-GTG-1 modulated NF-κB and IRF7 activation in neutrophils upon TLR8 engagement, resulting IL-1β, IL-8, and interferon-α upregulation, respectively.
CONCLUSIONS: The level of tRF-His-GTG-1 was positively correlated with NETs formation in SLE patients; tRF-His-GTG-1 inhibitor could efficiently suppress ICs-triggered NETs formation/hyperactivation, which may become a potential therapeutic target.
Neutrophils and platelets are key members in the immunopathogenesis of SLE. EVs play a key role in intercellular communication. Abnormal NETs formation promotes vascular complications and organ damage in SLE patients. tsRNA is a novel regulatory small non-coding RNA and participates in diverse pathological processes. Herein, we showed that SLE patient-derived ICs activates platelets directly, followed by intracellular tRF-His-GTG-1 upregulation, which is loaded into pEVs. The pEV-carried tRF-His-GTG-1 could interact with TLR8 in neutrophils, followed by activation of the downstream signaling pathway, including p47phox-NOX2-ROS, which causes NETs enhancement, while IRF7 promotes the expression of IFN-α. The tRF-His-GTG-1 inhibitor could suppress efficiently SLE ICs-induced NETs formation and pEVs primed NETs enhancement. This study offers new molecular machinery to explain the association between the platelets-derived tsRNAs, pEVs, and hyperactive NETs formation in lupus. tRF-His-GTG-1 may serve as a potential therapeutic target and help to advance our understanding of tsRNAs in SLE pathogenesis.