{Reference Type}: Journal Article {Title}: Effect of endocrine-disrupting chemicals on the expression of a calcium ion channel receptor (ryanodine receptor) in the mud crab (Macrophthalmus japonicus). {Author}: Kim WS;Park K;Kim JH;Kwak IS; {Journal}: Comp Biochem Physiol C Toxicol Pharmacol {Volume}: 283 {Issue}: 0 {Year}: 2024 Sep 5 {Factor}: 4.52 {DOI}: 10.1016/j.cbpc.2024.109972 {Abstract}: Endocrine-disrupting chemicals (EDCs) are toxic pollutants generated by artificial activities. Moreover, their hormone-like structure induces disturbances, such as mimicking or blocking metabolic activity. Previous studies on EDCs have focused on the adverse effect of the endocrine system in vertebrates, with limited investigations conducted on ion channels in invertebrates. Thus, in this study, we investigated the potential adverse effects of exposure to bisphenol-A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) at the molecular level on the ryanodine receptor (RyR), a calcium ion channel receptor in Macrophthalmus japonicus. In the phylogenetic analysis, the RyR amino acid sequences in M. japonicus clustered with those in the Crustacean and formed separated branches for RyR in insects and mammals. When exposed to 1 μg L-1 BPA, a significant increase in RyR mRNA expression was observed in the gills on day 1, although a similar level to the control group was observed from day 4 to day 7. However, the RyR expression due to DEHP exposure decreased on days 1 and 4, although it increased on day 7 following exposure to 10 μg L-1. The RyR expression pattern in the hepatopancreas increased for up to 4 days, depending on the BPA concentration. However, there was a tendency for the expression to decrease gradually after the statistical significance increased during the early stage of DEHP exposure (D1). Hence, the transcriptional alterations in the M. japonicus RyR gene observed in the study suggest that exposure toxicities to EDCs, such as BPA and DEHP, have the potential to disrupt calcium ion channel signaling in the gills and hepatopancreas of M. japonicus crabs.