{Reference Type}: Journal Article {Title}: Mitigation of mechanical damage and protein deterioration in giant river prawn (Macrobrachium rosenbergii) by multi-frequency ultrasound-assisted immersion freezing. {Author}: Xu W;Bao Y;Gou H;Xu B;Hong H;Gao R; {Journal}: Food Chem {Volume}: 458 {Issue}: 0 {Year}: 2024 Jul 3 {Factor}: 9.231 {DOI}: 10.1016/j.foodchem.2024.140324 {Abstract}: In order to investigate the effects of multi-frequency ultrasound-assisted immersion freezing (MUIF) on the meat quality of Macrobrachium rosenbergii, tail meat was subjected to different MUIF treatments respectively, namely 20 + 40 kHz (MUIF-20 + 40), 20 + 60 kHz (MUIF-20 + 60), 40 + 60 kHz (MUIF-40 + 60) and 20 + 40 + 60 kHz (MUIF-20 + 40 + 60), and the immersion freezing (IF) as control. Results showed that average diameter of ice crystals was 28 μm in IF, and that was only 8 μm in MUIF-20 + 40 + 60. When compared to IF, MUIF alleviated oxidative deterioration of lipids and proteins, but only at higher ultrasound frequency (MUIF-40 + 60; MUIF-20 + 40 + 60). Carbonyl content of MUIF-20 + 40 + 60 was only 40% of that in IF. Similarly, protein denaturation was inhibited in MUIF (except for MUIF-20 + 40). Transmission electron microscopy showed greater distortion of the ultrastructural components in IF, MUIF-40 + 60, and MUIF-20 + 40 + 60, suggested by bended Z-line. In conclusion, MUIF can be an effective strategy to mitigate mechanical damage and protein deterioration in the meat of Macrobrachium rosenbergii.