{Reference Type}: Journal Article {Title}: Pesticides in wastewater treatment plant effluents in the Yeongsan River Basin, Korea: Occurrence and environmental risk assessment. {Author}: Kim H;Kim SD; {Journal}: Sci Total Environ {Volume}: 946 {Issue}: 0 {Year}: 2024 Jul 4 {Factor}: 10.753 {DOI}: 10.1016/j.scitotenv.2024.174388 {Abstract}: Pesticides are among the main drivers posing risks to aquatic environments, with effluents from wastewater treatment plants (WWTPs) serving as a major source. This study aimed to identify the primary pesticides for which there was a risk of release into aquatic environments through WWTP effluents, thereby enabling more effective contamination management in public water bodies. In this study, monitoring, risk assessment, and risk-based prioritization of 87 pesticides in effluents from three WWTPs in the Yeongsan River Basin, Korea, were conducted. A total of 59 pesticides were detected at concentrations from 0.852 ng/L to 82.044 μg/L and exhibited variable patterns across different WWTP locations. An environmental risk assessment based on the risk quotient (RQ) of individual pesticides identified 13 substances implicated in significant ecotoxicological risks, as they exceeded RQ values of 1 at least once. An optimized risk (RQf)-based prioritization, considering the frequency of the measured environmental concentration (MEC) exceeding the predicted environmental concentration (PNEC), was conducted to identify pesticides that potentially posed risks and thus should be managed as a priority. Four pesticides had an RQf value >1; metribuzin exhibited the highest RQf value of 4.951, followed by 3-phenoxybenzoic acid, atrazin-2-hydroxy, and atrazine. Additionally, five pesticides (terbuthylazine, methabenzthiazuron, diuron, thiacloprid, and fipronil) and another four pesticides (propazine, imidacloprid, hexaconazole, and hexazione) had RQf values >0.1 and > 0.01, respectively. By calculating the contributions of individual pesticides to the RQf of these mixtures (RQf, mix) based on the concentration addition model, it was determined that >95 % of the sum of RQf, mix was driven by the top seven pesticides. These findings highlight the importance of prioritizing pesticides for effective management of contamination sources.