{Reference Type}: Journal Article {Title}: Embryonic dexamethasone exposure exacerbates hepatic steatosis and APAP-mediated liver injury in zebrafish. {Author}: Chang C;Gao P;Li J;Liang J;Xiang S;Zhang R; {Journal}: Ecotoxicol Environ Saf {Volume}: 282 {Issue}: 0 {Year}: 2024 Jul 4 {Factor}: 7.129 {DOI}: 10.1016/j.ecoenv.2024.116657 {Abstract}: Dexamethasone (DXMS), a synthetic glucocorticoid, is known for its pharmacological effects on anti-inflammation, stress response enhancement and immune suppression, and has been widely used to treat potential premature delivery and related diseases. However, emerging evidence has shown that prenatal DXMS exposure leads to increased susceptibility to multiple diseases. In the present study, we used zebrafish as a model to study the effects of embryonic DXMS exposure on liver development and disease. We discovered that embryonic DXMS exposure upregulated the levels of total cholesterol and triglycerides in the liver, increased the glycolysis process and ultimately caused hepatic steatosis in zebrafish larvae. Furthermore, DXMS exposure exacerbated hepatic steatosis in a zebrafish model of fatty liver disease. In addition, we showed that embryonic DXMS exposure worsened liver injury induced by paracetamol (N-acetyl-p-aminophenol, APAP), increased the infiltration of macrophages and neutrophils, and promoted the expression of inflammatory factors, leading to impeded liver regeneration. Taken together, our results provide new evidence that embryonic DXMS exposure exacerbates hepatic steatosis by activating glycolytic pathway, aggravates APAP-induced liver damage and impeded regeneration under a persistent inflammation, calling attention to DXMS administration during pregnancy with probable clinical implications for offspring.