{Reference Type}: Journal Article {Title}: The impact of air pollution on the facial skin of Caucasian women using real-life pollutant exposure measurements. {Author}: Robic J;Lata W;Nkengne A;Bigouret A;Vie K; {Journal}: Skin Res Technol {Volume}: 30 {Issue}: 7 {Year}: 2024 Jul {Factor}: 2.24 {DOI}: 10.1111/srt.13669 {Abstract}: BACKGROUND: To date, studies examining the effect of air pollution on skin characteristics have relied on regional pollution estimates obtained from fixed monitoring sites. Hence, there remains a need to characterize the impact of air pollution in vivo in real-time conditions. We conducted an initial investigation under real-life conditions, with the purpose of characterizing the in vivo impact of various pollutants on the facial skin condition of women living in Paris over a 6-month period.
METHODS: A smartphone application linked to the Breezometer platform was used to collect participants' individual exposures to pollutants through the recovery of global positioning system (GPS) data over a 6-month period. Daily exposure to fine particulate matter (PM 2.5 µm and PM 10 µm), pollen, and air quality was measured. Facial skin color, roughness, pore, hydration, elasticity, and wrinkle measurements were taken at the end of the 6-month period. Participants' cumulated pollutant exposure over 6 months was calculated. Data were stratified into two groups (lower vs. higher pollutant exposure) for each pollutant.
RESULTS: 156 women (20-60 years-old) were recruited, with 124 women completing the study. Higher PM 2.5 µm exposure was associated with altered skin color and increased roughness under the eye. Higher PM 10 µm exposure with increased wrinkles and roughness under the eye, increased pore appearance, and decreased skin hydration. Exposure to poorer air quality was linked with increased forehead wrinkles and decreased skin elasticity, while higher pollen exposure increased skin roughness and crow's feet.
CONCLUSIONS: This study suggests a potential correlation between air pollution and facial skin in real-life conditions. Prolonged exposure to PM, gases, and pollen may be linked to clinical signs of skin ageing. This study highlights the importance of longer monitoring over time in real conditions to characterize the effect of pollution on the skin.