{Reference Type}: Journal Article {Title}: Thyasirid species composition (Bivalvia: Thyasiridae) and genetic connectivity of Parathyasira equalis (A. E. Verrill & K. J. Bush, 1898) in deep basins of sub-Arctic fjords. {Author}: Kokarev V;Dufour SC;Raeymaekers JAM;Mailli AA;Reiss H; {Journal}: BMC Ecol Evol {Volume}: 24 {Issue}: 1 {Year}: 2024 Jul 4 暂无{DOI}: 10.1186/s12862-024-02278-3 {Abstract}: BACKGROUND: Thyasirid bivalves are often recorded as a dominant component of macrobenthic infaunal communities in depositional environments such as fjord basins. Fjord basins comprise patchy soft-bottom habitats bounded by steep walls and sills; however, little is known how this semi-isolated nature of fjords affects benthic populations. Accordingly, data on the composition and population connectivity of thyasirids can provide valuable information on the ecology of these ecosystems.
RESULTS: The species composition of thyasirid bivalves has been studied in the basins of three sub-Arctic fjords (Nordland, Northern Norway). Overall, six thyasirid species were recorded: Parathyasira equalis, Parathyasira dunbari, Mendicula ferruginosa, Genaxinus eumyarius, Thyasira sarsii, and Thyasira obsoleta. The species composition remained stable within the basins during the sampling period (2013-2020) and suggested the importance of local reproduction over advection of individuals for population dynamics. Only one species, Parathyasira equalis, was common in all fjords. We have further investigated the population genetics of this species by combining two types of genetic markers: a 579 bp fragment of the cytochrome c oxidase subunit I (COI) gene and 4043 single-nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing. The latter provided a more in-depth resolution on the population genetics of this species and revealed a weak but significant differentiation of populations within fjords, further indicating limited connectivity between basins.
CONCLUSIONS: Based on our findings, we conclude that limited dispersal between the basin communities results in weakly connected populations and might be an important structuring factor for macrobenthic communities.