{Reference Type}: Journal Article {Title}: Release of nanoparticle coatings additives from common surfaces via simulated dermal contact. {Author}: Tolbert GL;Kolaitis R;Thomas T;Matheson J;Clar JG; {Journal}: Sci Total Environ {Volume}: 946 {Issue}: 0 {Year}: 2024 Jul 2 {Factor}: 10.753 {DOI}: 10.1016/j.scitotenv.2024.174381 {Abstract}: Both nanoparticles (NPs) and nano-enabled products have become widely available in consumer markets in the last decade. Surface coating including paints, stains, and sealants, have seen large increases in the inclusion of nanomaterials in their formulations to increase UV resistance, hydrophobicity, and scratch resistance. Currently, most literature studying the release of NPs and byproducts from coated surfaces has focused exclusively on lumber. In this study, well characterized CeO2 NPs were dispersed in either Milli-Q water, or a commercial paint primer and applied to several test surfaces including sanded plywood, drywall, low density polyethylene, acrylonitrile butadiene styrene, polycarbonate, textured polycarbonate with pebble finish, and glass. Coated surfaces were sampled using a method previously developed by U.S. Consumer Product Safety Commission staff to track the release of NPs via simulated dermal contact. Particular attention has been paid to the total amount, and morphology of material released. The total amount of cerium released from coated surfaces was found to be dependent on both the identity of the test surface, as well as the solution used for coating. Water-based application found 22-50 % of the applied cerium removed during testing, while primer-based application showed released rates ranging between 0.1 and 3 %. Finally, the SEM micrographs presented here suggest the release of microplastic particles during simulated dermal contact with plastic surfaces.