{Reference Type}: Journal Article {Title}: Role of TSP-1 and its receptor ITGB3 in the renal tubulointerstitial injury of focal segmental glomerulosclerosis. {Author}: Fan Y;Dong S;Xia Y;Yang X;Lei Q;Xu F;Liang D;Liang S;Zhang M;Yang F;Jing Y;Li L;Zhu X;Bao H;Chen Z;Zeng C; {Journal}: J Biol Chem {Volume}: 0 {Issue}: 0 {Year}: 2024 Jul 1 暂无{DOI}: 10.1016/j.jbc.2024.107516 {Abstract}: Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin β3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expressions of TSP-1 and ITGB3 were up-regulated. We found that the level of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The serum level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. THBS1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to BSA and the ADR-induced nephropathy model. THBS1 knockout ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with BSA, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.