{Reference Type}: Journal Article {Title}: The supramolecular synthon behavior within cocrystals of pyrazinamide and alkyl dicarboxylic acids: A perspective from terahertz spectroscopy and quantum chemical calculation. {Author}: Wang P;Li Y;Han W;Yan Y;Zhang C;Qu Q;Zhang X;Liu L;Sun X;Yang X;He M; {Journal}: Talanta {Volume}: 278 {Issue}: 0 {Year}: 2024 Oct 1 {Factor}: 6.556 {DOI}: 10.1016/j.talanta.2024.126489 {Abstract}: Pyrazinamide (PZA) is a widely-used anti-tuberculosis pharmaceutical, but its poor solubility prompts us to optimize pharmaceutical performance. Cocrystallization is a promising technique to improve physiochemical properties of active pharmaceutical ingredient (API) by connecting it with cocrystal former (CCF) via intermolecular interactions. Even though a series of alkyl dicarboxylic acids are employed to form cocrystal structures, systematic understanding on the role of intermolecular interactions is still missing. Therefore, terahertz (THz) spectroscopy and quantum chemical calculation are combined to elucidate the behavior of ubiquitous supramolecular synthons, such as hetero-synthons of acid-pyrazine, acid-amide and homo-synthon of amide-amide, from energy's view. Potential energy is calculated to differentiate the stability within polymorphs of PZA-MA cocrystal and free energy is evaluated to compare the solubility of PZA-CCF cocrystals respectively. With regard to vibrational energy, THz spectral fingerprints are theoretically assigned to specific vibrations and attributed to the flexibility deformation of supramolecular synthons based on oscillation theory, where stretching and twisting modes dominate the collective vibrational behavior. It provides a promising tool to evaluate cocrystal performance from its driving force and insightful guidance to discover new pharmaceutical cocrystals.