{Reference Type}: Journal Article {Title}: Exosomal miR-4516 derived from ovarian cancer stem cells enhanced cisplatin tolerance in ovarian cancer by inhibiting GAS7. {Author}: Pan X;Shi X;Zhang H;Chen Y;Zhou J;Shen F;Wang J;Jiang R; {Journal}: Gene {Volume}: 927 {Issue}: 0 {Year}: 2024 Jun 30 {Factor}: 3.913 {DOI}: 10.1016/j.gene.2024.148738 {Abstract}: Ovarian cancer (OC) is a devastating disease for women, with chemotherapy resistance taking the lead. Cisplatin has been the first-line therapy for OC for a long time. However, the resistance of OC to cisplatin is an important impediment to its efficacy. Mounting studies showed that ovarian cancer stem cells (OCSCs) affected chemotherapy resistance by secreting exosomes. MicroRNAs (miRNAs) play important roles in exosomes secreted by OCSCs. Here, through the analysis of GEO database (GSE107155) combined with RT-qPCR of OC-related cells/clinical tissues, it was found that hsa-miR-4516 (miR-4516) was significantly up-regulated in OCSCs. Then, OCSCs-derived exosomes were isolated and identified, and it was observed the influence of exosomes on the chemoresistance in SKOV3/cisplatin (SKOV3/DDP) cells. These results manifested that OCSCs-mediated exosomes facilitated the chemoresistance of SKOV3/DDP cells by delivering miR-4516 into them. Growth arrest-specific 7 (GAS7), a downstream target of miR-4516, was determined by bioinformatics prediction combined with molecular biological detection. Next, we up-regulated GAS7 expression and discovered that the promotion of chemoresistance in SKOV3/DDP cells by OCSCs-derived exosomes was significantly impaired. Finally, the mice tumor model of SKOV3/DDP cells was built to estimate the effect of GAS7 over-expression on OC growth. The results showed that GAS7 inhibited the chemoresistance of OC in vivo. In conclusion, our experiments suggested that OCSCs-derived exosomes enhanced OC cisplatin resistance by suppressing GAS7 through the delivery of miR-4516. This study provides a possible target for the treatment of OC DDP resistance.