{Reference Type}: Journal Article {Title}: Roles of pigment epithelium-derived factor in exercise-induced suppression of senescence and its impact on lung pathology in mice. {Author}: Tsushima H;Tada H;Asai A;Hirose M;Hosoyama T;Watanabe A;Murakami T;Sugimoto M; {Journal}: Aging (Albany NY) {Volume}: 16 {Issue}: 0 {Year}: 2024 Jun 26 {Factor}: 5.955 {DOI}: 10.18632/aging.205976 {Abstract}: Senescent cells contribute to tissue aging and underlie the pathology of chronic diseases. The benefits of eliminating senescent cells have been demonstrated in several disease models, and the efficacy of senolytic drugs is currently being tested in humans. Exercise training has been shown to reduce cellular senescence in several tissues; however, the mechanisms responsible remain unclear. We found that myocyte-derived factors significantly extended the replicative lifespan of fibroblasts, suggesting that myokines mediate the anti-senescence effects of exercise. A number of proteins within myocyte-derived factors were identified by mass spectrometry. Among these, pigment epithelium-derived factor (PEDF) exerted inhibitory effects on cellular senescence. Eight weeks of voluntary running increased Pedf levels in skeletal muscles and suppressed senescence markers in the lungs. The administration of PEDF reduced senescence markers in multiple tissues and attenuated the decline in respiratory function in the pulmonary emphysema mouse model. We also showed that blood levels of PEDF inversely correlated with the severity of COPD in patients. Collectively, these results strongly suggest that PEDF contributes to the beneficial effects of exercise, potentially suppressing cellular senescence and its associated pathologies.