{Reference Type}: Journal Article {Title}: Discovery of Novel Spiropiperidinyl-α-methylene-γ-butyrolactones as Antifungal and Antitoxin Agents Targeting Oxysterol Binding Protein. {Author}: Yuan H;Yang H;Gao Y;Zhang J;Ren J;Liu X;Li Y;Li Z;Zhao B;Fan Z; {Journal}: J Agric Food Chem {Volume}: 72 {Issue}: 28 {Year}: 2024 Jul 17 {Factor}: 5.895 {DOI}: 10.1021/acs.jafc.4c02848 {Abstract}: Corn ear rot and fumonisin caused by Fusarium verticillioides pose a serious threat to food security. To find more highly active fungicidal and antitoxic candidates with structure diversity based on naturally occurring lead xanthatin, a series of novel spiropiperidinyl-α-methylene-γ-butyrolactones were rationally designed and synthesized. The in vitro bioassay results indicated that compound 7c showed broad-spectrum in vitro activity with EC50 values falling from 3.51 to 24.10 μg/mL against Rhizoctonia solani and Alternaria solani, which was more active than the positive controls xanthatin and oxathiapiprolin. In addition, compound 7c also showed good antitoxic efficacy against fumonisin with a 48% inhibition rate even at a concentration of 20 μg/mL. Fluorescence quenching and the molecular docking validated both 7c and oxathiapiprolin targeting at FvoshC. RNA sequencing analysis discovered that FUM gene cluster and protein processing in endoplasmic reticulum were downregulated. Our studies have discovered spiropiperidinyl-α-methylene-γ-butyrolactone as a novel FvoshC target-based scaffold for fungicide lead with antitoxin activity.