{Reference Type}: Journal Article {Title}: Advancements in Bovine Organoid Technology Using Small and Large Intestinal Monolayer Interfaces. {Author}: Dykstra GD;Kawasaki M;Ambrosini YM; {Journal}: J Vis Exp {Volume}: 0 {Issue}: 208 {Year}: 2024 Jun 14 {Factor}: 1.424 {DOI}: 10.3791/67010 {Abstract}: Advancing knowledge of gastrointestinal physiology and its diseases critically depends on the development of precise, species-specific in vitro models that faithfully mimic in vivo intestinal tissues. This is particularly vital for investigating host-pathogen interactions in bovines, which are significant reservoirs for pathogens that pose serious public health risks. Traditional 3D organoids offer limited access to the intestinal epithelium's apical surface, a hurdle overcome by the advent of 2D monolayer cultures. These cultures, derived from organoid cells, provide an exposed luminal surface for more accessible study. In this research, a detailed protocol is introduced for creating and sustaining 2D monolayer cultures from cells of bovine small and large intestinal organoids. This method includes protocols for assessing membrane integrity through transepithelial electrical resistance and paracellular permeability alongside immunocytochemistry staining techniques. These protocols lay the groundwork for establishing and characterizing a 2D bovine monolayer culture system, pushing the boundaries of these method applications in biomedical and translational research of public health importance. Employing this innovative approach enables the development of physiologically pertinent in vitro models for exploring both normal and diseased states of cattle intestinal physiology. The implications for biomedical and agricultural advancements are profound, paving the way for more effective treatments for intestinal ailments in cattle, thereby enhancing both animal welfare and food safety.