{Reference Type}: Journal Article {Title}: Harnessing host enhancers of SARS-CoV-2 entry as novel targets for antiviral therapy. {Author}: Williams N;Silva F;Schmolke M; {Journal}: Antiviral Res {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 28 {Factor}: 10.103 {DOI}: 10.1016/j.antiviral.2024.105951 {Abstract}: The WHO declared the official end of the SARS-CoV-2 caused public health emergency on May 5th, 2023, after two years in which the virus infected approximately 750 Mio individuals causing estimated up to 7 Mio deaths. Likely, the virus will continue to evolve in the human population as a seasonal respiratory pathogen. To now prevent severe infection outcomes in vulnerable individuals, effective antivirals are urgently needed to complement the protection provided by vaccines. SARS-CoV-2 enters its host cell via ACE2 mediated membrane fusion, either at the plasma membrane, if the protease TMPRSS2 is present or via the endosome, in a cathepsin dependent fashion. A small number of positive regulators of viral uptake were described in the literature, which are potentially useful targets for host directed antiviral therapy or biomarkers indicating increased or diminished susceptibility to infection. We identified here by cell surface proximity ligation novel proteins, required for efficient virion uptake. Importantly, chemical inhibition of one of these factors, SLC3A2, resulted in robust reduction of viral replication, to that achieved with a TMPRSS2 inhibitor. Our screen identified new host dependency factors for SARS-CoV-2 entry, which could be targeted by novel antiviral therapies.