{Reference Type}: Journal Article {Title}: Green synthesized lignin nanoparticles for the sustainable delivery of pyraclostrobin to control strawberry diseases caused by Botrytis cinerea. {Author}: Liu J;Wang X;Chang J;Du P;Wu J;Hou R;Zhu S;Liu P;Miao X;Zhang P;Zhang Z; {Journal}: Int J Biol Macromol {Volume}: 274 {Issue}: 0 {Year}: 2024 Aug 27 {Factor}: 8.025 {DOI}: 10.1016/j.ijbiomac.2024.133488 {Abstract}: Lignin, renowned for its renewable, biocompatible, and environmentally benign characteristics, holds immense potential as a sustainable feedstock for agrochemical formulations. In this study, raw dealkaline lignin (DAL) underwent a purification process involving two sequential solvent extractions. Subsequently, an enzyme-responsive nanodelivery system (Pyr@DAL-NPs), was fabricated through the solvent self-assembly method, with pyraclostrobin (Pyr) loaded into lignin nanoparticles. The Pyr@DAL-NPs shown an average particle size of 250.4 nm, demonstrating a remarkable loading capacity of up to 54.70 % and an encapsulation efficiency of 86.15 %. Notably, in the presence of cellulase and pectinase at a concentration of 2 mg/mL, the release of Pyr from the Pyr@DAL-NPs reached 92.66 % within 120 h. Furthermore, the photostability of Pyr@DAL-NPs was significantly improved, revealing a 2.92-fold enhancement compared to the commercially available fungicide suspension (Pyr SC). Bioassay results exhibited that the Pyr@DAL-NPs revealed superior fungicidal activity against Botrytis cinerea over Pyr SC, with an EC50 value of 0.951 mg/L. Additionally, biosafety assessments indicated that the Pyr@DAL-NPs effectively declined the acute toxicity of Pyr towards zebrafish and posed no negative effects on the healthy growth of strawberry plants. In conclusion, this study presents a viable and promising strategy for developing environmentally friendly controlled-release systems for pesticides, offering the unique properties of lignin.