{Reference Type}: Journal Article {Title}: Hydrogen combined with tetrandrine attenuates silica-induced pulmonary fibrosis via suppressing NF-kappaB/NLRP3 signaling pathway-mediated epithelial mesenchymal transition and inflammation. {Author}: Li J;Cui P;Jing H;Chen S;Ma L;Zhang W;Wang T;Ma J;Cao M;Yang Y;Bai J;Shao H;Du Z; {Journal}: Int Immunopharmacol {Volume}: 138 {Issue}: 0 {Year}: 2024 Jun 28 {Factor}: 5.714 {DOI}: 10.1016/j.intimp.2024.112563 {Abstract}: Silicosis is a progressive disease characterized by interstitial fibrosis resulting from inhalation of silica particles, and currently lacks specific treatment. Hydrogen (H2) has demonstrated antioxidative, anti-inflammatory, and anti-fibrotic properties, yet its efficacy in treating silicosis remains unexplored. In this study, rats exposed to silica were administered interventions of H2 combined with tetrandrine, and euthanized at 14, 28, and 56 days post-intervention. Lung tissues and serum samples were collected for analysis. Histological examination, MDA assay, enzyme-linked immunosorbent assay, hydroxyproline assay, and Western blotting were employed to assess the impact of H2 combined with tetrandrine on pulmonary fibrosis. The results revealed that this combination significantly alleviated inflammation in silicosis-afflicted rats, effectively suppressed levels of MDA, TNF-α, and IL-1β expression, and inhibited epithelial-mesenchymal transition (EMT), thereby ameliorating pulmonary fibrosis. Notably, protein expression level of E-cadherin was increased,however protein expression levels of vimentin and α-SMA were reduced, and TGF-β were reduced, alongside a significant decrease in hydroxyproline content. Furthermore, H2 combined with tetrandrine downregulated protein expression of NF-κB p65, NF-κB p-p65, Caspase-1, ASC, and NLRP3. These findings substantiate the hypothesis that H2 combined with tetrandrine mitigates inflammation associated with silicosis and suppresses the EMT process to ameliorate fibrosis via the NF-κB/NLRP3 signaling pathway. However, the pressure of airway opening was not assessed in this study and dynamic readings of lung physiological function were not obtained, which is a major limitation of this study.