{Reference Type}: Journal Article {Title}: Hydrogen peroxide enhanced glow-type chemiluminescence of hydrazine hydrate modified carbon quantum dots-potassium persulfate system. {Author}: Han SH;Huang DD;Cheng ZJ;Liu AL;Lei Y; {Journal}: Spectrochim Acta A Mol Biomol Spectrosc {Volume}: 321 {Issue}: 0 {Year}: 2024 Jun 26 {Factor}: 4.831 {DOI}: 10.1016/j.saa.2024.124730 {Abstract}: Most known chemiluminescence (CL) systems are flash-type that generate weak luminescence and decline quickly after dozens of seconds, while the glow-type CL systems have stable emission for an extended period to achieve accurate quantitation. In this work, a long-term CL system based on hydrazine-hydrate (N2H4·H2O) modified carbon quantum dots (N-CQDs) as a luminescent probe, with K2S2O8 and H2O2 as co-reactants, was proposed. The CL emission enhanced by H2O2 increased 18-fold more than that of N-CQDs and K2S2O8 direct reaction, and decayed by 5% of the maximum intensity over 700 s. In the reaction system, K2S2O8 and H2O2 co-reactants can promote each other to continuously generate corresponding radicals (•OH, O2•-, 1O2), which in turn trigger the CL emission of N-CQDs. This phenomenon was identified as the primary cause for the production of persistent CL. In addition, a stable and selective CL sensor based on the N-CQDs-K2S2O8-H2O2 CL enhancing system was developed for ascorbic acid quantitation in the linear range from 0.1 to 10.0 mM with a detection limit of 0.036 mM. The method has been applied to the analysis of tablet samples and holds potential in pharmaceutical analysis field.