{Reference Type}: Journal Article {Title}: Arsenic Induced Oxidative Neural-Damages in Rat are Mitigated by Tea-Leave Extract via MMPs and AChE Inactivation, Shown by Molecular Docking and in Vitro Studies with Pure Theaflavin and AChE. {Author}: Medda N;Maiti S;Acharyya N;Samanta T;Banerjee A;De SK;Ghosh TK;Maiti S; {Journal}: Cell Biochem Biophys {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 28 {Factor}: 2.989 {DOI}: 10.1007/s12013-024-01369-8 {Abstract}: BACKGROUND: Chronic arsenic-exposure causes neuromuscular disorders and other health anomalies. Damage to DNA and cytoskeletal/extracellular matrix is brought on by reactive-oxygen-species (ROS)-induced intrinsic antioxidant depletion (thiols/urate). Therapeutic chelating-agents have multiple side-effects.
OBJECTIVE: The protection of (Camellia sinensis) tea-extract and role of uric-acid (UA) or allopurinol (urate-depletor) on arsenic-toxicity were verified in rat model.
METHODS: Camellia sinensis (CS dry-leaves), UA or allopurinol was supplemented to arsenic-intoxicated rats for 4-weeks. Purified theaflavins and their galloyl-ester were tested in-vitro on pure AChE (acetylcholinesterase) and their PDB/PubChem 3-D structures were utilized for in-silico binding studies. The primary chemical components were evaluated from CS-extracts. Biochemical analysis, PAGE-zymogram, DNA-stability comet analysis, HE-staining was performed in arsenic-exposed rat brain tissues.
RESULTS: Animals exposed to arsenic showed symptoms of erratic locomotion, decreased intrinsic antioxidants (catalase/SOD1/uric acid), increased AChE, and malondialdehyde. Cerebellar and cerebrum tissue damages were shown with increased levels of matrix-metalloprotease (MMP2/9) and DNA damage (comets). Allopurinol- supplemented group demonstrated somewhat similar biochemical responses. In the CS-group brain tissues especially cerebellum is considerably protected which is evident from endogenous antioxidant and DNA and cytoskeleton protection with concomitant inactivation of MMPs and AChE. Present study indicates theaflavin-digallate (TFDG) demonstrated the highest inhibition of purified AChE (IC50 = 2.19 µg/ml with the lowest binding free-energy; -369.87 kcal/mol) followed by TFMG (IC50 = 3.86 µg/ml, -347.06 kcal/mol) suggesting their possible restoring effects of cholinergic response.
CONCLUSIONS: Favorable responses in UA-group and adverse outcome in allo-group justify the neuro-protective effects of UA as an endogenous antioxidant. Role of flavon-gallate in neuro protection mechanism may be further studied.