{Reference Type}: Journal Article {Title}: Untargeted metabolic profiling of high-dose methotrexate toxicity shows alteration in betaine metabolism. {Author}: Karim S;Alkreathy H;Khan MI; {Journal}: Drug Chem Toxicol {Volume}: 0 {Issue}: 0 {Year}: 2024 Jun 27 {Factor}: 2.597 {DOI}: 10.1080/01480545.2024.2369587 {Abstract}: Cardiotoxicity is a well-established adverse effect of several drugs across multiple therapeutic indications. It is particularly prevalent following anticancer therapy. In order to evaluate the changes in cellular metabolism associated with methotrexate cardiotoxicity, we treated Wistar rats with a single high dose of methotrexate (HDMTX), and after five days, the animals were sacrificed. We then analyzed the cardiotoxicity parameters in serum like Cardiac enzymes(CK-MB, Troponin T, ALP), Inflammatory markers (TNF-α and IL-6), oxidative stress markers (NO, NOX-2), histopathology and cardiac tissue with the goal of identifying a metabolic signature of cardiotoxicity using discovery-based metabolomics. The biochemical parameters for cardiac enzymes, oxidative stress and inflammatory markers showed a significant increase in all three categories in rats treated with HDMTX. These findings were mirrored in the histopathological analysis confirming cardiotoxicity due to HDMTX. The results showed a total of 95 metabolites that were found to be significantly (p < 0.05) modulated: either up- or downregulated in the HDMTX-treated group when compared with the control group. Using integrated pathway analysis we found these metabolites were associated with many important cardiac tissue metabolic pathways, such as the malate aspartate shuttle, taurine and hypotaurine metabolism, betaine metabolism, spermidine biosynthesis, and homocysteine degradation. Among them, L-arginine, homocysteine, and betaine were significantly upregulated, suggesting their possible association with cardiac tissue injury. Overall, we provided evidence for using untargeted metabolomics to identify novel metabolites associated with HDMTX cardiac toxicity.