{Reference Type}: Journal Article {Title}: Synthesis and Photophysical Characterization of Fluorescent Naphtho[2,3-d]thiazole-4,9-Diones and Their Antimicrobial Activity against Staphylococcus Strains. {Author}: Hagimori M;Hara F;Mizuyama N;Takada S;Hayashi S;Haraguchi T;Hatanaka Y;Nagao T;Tanaka S;Yoshii M;Yoshida M; {Journal}: Molecules {Volume}: 29 {Issue}: 12 {Year}: 2024 Jun 11 {Factor}: 4.927 {DOI}: 10.3390/molecules29122777 {Abstract}: The chemical reaction of 2-(methylsulfinyl)naphtho[2,3-d]thiazole-4,9-dione (3) using different amines, including benzylamine (4a), morpholine (4b), thiomorpholine (4c), piperidine (4d), and 4-methylpiperazine (4e), produced corresponding new tricyclic naphtho[2,3-d]thiazole-4,9-dione compounds (5a-e) in moderate-to-good yields. The photophysical properties and antimicrobial activities of these compounds (5a-e) were then characterized. Owing to the extended π-conjugated system of naphtho[2,3-d]thiazole-4,9-dione skeleton and substituent effect, 5a-e showed fluorescence both in solution and in the solid state. The introduction of nitrogen-containing heterocycles at position 2 of the thiazole ring on naphtho[2,3-d]thiazole-4,9-dione led to large bathochromic shifts in solution, and 5b-e exhibited orange-red fluorescence with emission maxima of over 600 nm in highly polar solvents. Staphylococcus aureus (S. aureus) is a highly pathogenic bacterium, and infection with its antimicrobial-resistant pathogen methicillin-resistant S. aureus (MRSA) results in serious clinical problems. In this study, we also investigated the antimicrobial activities of 5a-e against S. aureus, MRSA, and S. epidermidis. Compounds 5c with thiomorpholine group and 5e with 4-methylpiperazine group showed potent antimicrobial activity against these bacteria. These results will lead to the development of new fluorescent dyes with antimicrobial activity in the future.